

Journal of Information Technology and Computer Science
Volume 4, Number 3, Desember 2019, pp. 253-266

Journal Homepage: www.jitecs.ub.ac.id

Prototype of REST Location-based Service for Trip

Planning by Paratransit (Mikrolet) in Malang City

Agi Putra Kharisma
1
, Aryo Pinandito

2

Universitas Brawijaya, Fakultas Ilmu Komputer, Malang, Indonesia
{1agi, 2aryo}@ub.ac.id

Received 31 July 2019; accepted 29 November 2019

Abstract. Paratransit (mikrolet) was very popular in Malang city. However, their

popularity is reduced by the availability of wide variety of more modern and
online public transportations. One of the obstacles commonly faced by
passengers of mikrolet is the limited information about the routes taken by

mikrolet. In this paper, we proposed a prototype of service that can generate trip
planning by mikrolet. We use depth-first search (DFS) algorithm as the basis to
build our solution because it is relatively simple to modify. The service for trip

planning available through REST web service and utilize location-based service

style. Based on functionality testing result, the proposed system successfully
generate all trip plans as expected. From performance perspective, when the
number of routes and plans increased, the overall system performance degrades,

so in the future the proposed prototype and its algorithm may needs further
optimization.

1 Introduction

Paratransit in Malang city is also known as mikrolet. Most of mikrolet are owned and

operated by individuals. Along with the times, paratransit should be able to satisfy the

passengers because more and more alternative modes of public transportation are

available. The availability of information is among the most significant factor affecting

the quality of paratransit services [1]. One of the obstacles commonly faced by

passengers, especially inexperienced passengers, of mikrolet is the limited information

about the routes taken by mikrolet. As a result, inexperienced passengers often

experience difficulties and eventually switch to another mode of transportation. The

availability of route information is very important as one of factors that affects the

quality of public transportation [2]. Research in Bandung city revealed that the most

needed requirement by passenger was information on the paratransit route [3]. With the

availability of travel route information, passengers are expected to make trip plans

before taking an actual trip with mikrolet.

Mikrolet operate via a predetermined and fixed route called lyn. An example of lyn

is AH which stands for Arjosari - Hamid Rusdi. Arjosari and Hamid Rusdi are the

starting and ending locations of the mikrolet trips. Like the characteristics of paratransit

in general, mikrolet can pick up or drop off their passengers in almost anywhere in the

route they take and are not required to stop at bus stop or station. This characteristic

distinguishes between mikrolet and buses or trains that are regularly scheduled and only

stop at certain places.

254 JITeCS Volume 4, Number 3, Desember 2019, pp 253-266

p-ISSN: 2540-9433; e-ISSN: 2540-9824

In our previous study, a representational state transfer application programming

interfaces (REST APIs) was proposed to serve information about local public

transportation in Malang city [4]. These REST APIs was designed to accommodate all

kind of local public transportation in Malang city, including paratransit (mikrolet),

school bus, rickshaw (becak) and motorcycle taxi (ojek). One of the main features of

that REST API is to provide trip planning. The APIs is designed and implemented based

on REST architectural style because REST is scalable, using general interfaces [5] and

can be implemented on hypertext transfer protocol version 1.1 (HTTP/1.1) seamlessly.

So, the clients can consume the services easily. So, our solution in this study is based

on that API design with slight modification.

In order to generate trip plans, the REST API that will be developed should accepts

input in the form of origin and destination location by utilizing location-based services.

Location-based Services are mobile services for providing information that has been

created, compiled, selected or filtered under consideration of the user’s current

locations or those of other persons or mobile devices [6]. Location-based services can

improve public transportation services for people with or without impairments [7]. In

this study, location-based services are used in the process of identifying the origin

location automatically, while the destination location is determined manually by the

passenger. The client applications of REST API can utilize GPS sensors on their device

to produce origin location coordinates that are quite accurate. Nowadays GPS sensors

on smartphones are getting more accurate and smartphone technology has been widely

used in public transportation. Smartphone has been used as trip planning system on

smart tourism technologies to enhance travel satisfaction and it has been used

exploratively and exploitatively [8].

Among the opportunities and challenges in the use of smartphones in public

transportation is route planning. The smartphones application can be used to optimize

routes and select modes of transportation in certain areas. Mobile applications can also

be used to assist multi destination trip planning by public transportation [9]. The route

and trip planning calculation process can be done on a smartphone or done on a server.

This study chose to put the calculation process on the server that can be accessed via

REST API to reduce the computational load on smartphones because the resources on

smartphones are relatively limited.

This study focuses on the problem of how to implement a location-based trip

planning method by utilizing REST APIs technology and certain path finding

algorithm. The problem in this study is not to find the closest route or shortest path, but

to look for all possible and reasonable routes or trip plans available. To generate all

possible routes or trip plans, we modify depth-first search (DFS) algorithm for

traversing graph data structures. DFS has the advantage of being easily modified

because this algorithm is quite generic [10]. DFS has also been used as a method in

planning trips by public transportation [11].

DFS algorithm is not the fastest algorithm for graph traversing. In terms of

performance, DFS algorithms tend not to be linear. As the number of vertices in graph

increases, the time needed for the DFS algorithm increases higher and resembles an

exponential growth [12]. In this study, we will also measure the performance of our

modified DFS algorithm.

2 Data Analysis and Modeling

Basically, mikrolet travel based on fixed and pre-determined routes according to its lyn.
In its journey, one lyn may intersect or pass several segments of the same road with
another lyn. In this condition, passengers can usually transit to move from one lyn to

Agi & Aryo, Prototype of Rast Location-based Service:

... 255

p-ISSN: 2540-9433; e-ISSN: 2540-9824

another lyn. But sometimes passengers need to walk when transiting to move to another
lyn if the lyn don't meet each other on the same road. In this study, we did not take into
account the transit process which involved walking by passengers.

In reality, mikrolet can pick up or drop off their passengers in almost anywhere in
the route they take and are not required to stop at bus stop or station. In our proposed
model, we represent mikrolet travel routes in the form of directed graphs (digraph),
where the edges represent roads and vertices represent places that can be used for pick
up or drop off passengers. The more the number of vertices, the more precise the
location of pick up or drop off passengers because the more the number of vertices it
will increasingly resemble a line (road) as in Figure 1. On graphs with fewer vertices,
passengers may be directed to locations farther than they should be as shown in right
side example of Figure 1. However, as a tradeoff, the greater number of vertices will
require higher computation requirements.

Fig. 1. The comparation of greater number of vertices (left) and lesser number (right) of

vertices

Generally, the process of planning a travel with mikrolet can be seen in Figure 2.

First of all the passenger determines the origin and destination locations along with the
maximum tolerance distance to reach the mikrolet and reach the destination since
passengers may have to walk to reach the mikrolet and reach the destination. The
proposed system records all locations (origin and destination) that are within the reach
of passengers. In Figure 2, gray nodes are all origin locations and black nodes are all
destination origin within passenger range, while the labels A, B, C and D are lyn. Then
the system will process these inputs with a special algorithm described in the algorithm
design section of this paper to generate trip plans.

Fig. 2. General process of trip planning with mikrolet

256 JITeCS Volume 4, Number 3, Desember 2019, pp 253-266

p-ISSN: 2540-9433; e-ISSN: 2540-9824

In order to implement the proposed system, object-oriented development is used to
produce prototypes. So that all entities involved in the trip planning process are modeled
in the form of classes and their relationships (UML class diagram) as shown in Figure
3.

Fig. 3. Structural model of prototype

3 Design of Algorithm

The problems to be solved in this study is modeled in the form of graphs. In Figure 3 it
has been stated that there is a Graph class which is a representation of a mikrolet routes
network. Mikrolet route network contains all of the stops for mikrolet to pick up or drop
off their passengers (represented by vertices of graph) along with all lanes that are
passed by lyn (represented by edges of graph). To simplify the explanation, we use an
example based on the hypothetical conditions in Figure 2. Based on Figure 2 we can
illustrate the mikrolet route network as in Figure 4.

Fig. 4. Example of mikrolet route network (based on Figure 2)

The first step of the trip planning algorithm is to determine all origin locations and

destination locations based on the passenger range. In the example in Figure 2, the
origin locations are nodes 1,2 and 3 while the destination locations are nodes 4 and 5.
Measurement of the distance between the passenger and the location of origin /
destination is done using the Haversine formula, as in equation 1 [13]:

𝑑 = 2𝑟 𝑎𝑟𝑐𝑠𝑖𝑛√𝑠𝑖𝑛2 (
𝜑2−𝜑1

2
) + 𝑐𝑜𝑠(𝜑1). cos(𝜑2). 𝑠𝑖𝑛2 (

𝜆2−𝜆1

2
) (1)

Agi & Aryo, Prototype of Rast Location-based Service:

... 257

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Where:

d = distance between two locations (in kilometers)

r = the radius of earth (6371 kilometers)

φ1 dan φ2 = latitude 1 and latitude 2 (in radians)

λ1 dan λ2 = longitude 1 and longitude 2 (in radians)

The second step of the trip planning algorithm is to generate all path from all origin

locations to all destination locations. In the example in Figure 2, there are 3 origin
locations and 2 destination locations, so there are 6 pairs (3*2) of origin and destination
locations. Each pair will generate all possible paths using the "FindAllPath" algorithm
in the following pseudocode:

Algorithm FindAllPaths(G, o, d):

Input: A graph G,

 an ordered list of visited node o in G,

 a destination node d in G

Output: All paths p from o to d

for each adjacent nodes n in last element of o

 if o contains n then

 continue

 end if

 if n = a then

 add a to last element of o

 add o to p

 break;

 end if

end for

for each adjacent nodes n in last element of o

 if (o contains n) or (n = d) then

 continue

 end if

 add n to last element of o

 FindAllPaths(G, o, d);

 remove last element of o;

end for

The “FindAllPaths” algorithm is a modification of the DFS algorithm by adding the
recording process to the history of graph traversing. From the example in Figure 2, all
the generated paths can be seen in Table 1.

Table 1. All generated paths (based on Figure 2)

No Origin

Node

Destination

Node

Path

1 1 4 12 – 23 – 34

2 2 4 23 – 34

3 3 4 34

4 1 5 12 – 23 – 34 – 45

5 1 5 16 – 67 – 75

6 2 5 23 – 34 – 45

7 3 5 34 – 45

The third step of the trip planning algorithm is to generate all of possible plans. All

258 JITeCS Volume 4, Number 3, Desember 2019, pp 253-266

p-ISSN: 2540-9433; e-ISSN: 2540-9824

possible trip plans are the result of cartesian products from all lyn on all paths. Cartesian
product is a set of all ordered pairs of elements from two sets [14]. In this case, the
ordered pairs consist of lyn. Then the cartesian product results are filtered to produce a
unique trip plans. The detailed step-by-step processes to generate all of possible plans
can be seen in the "GenerateAllPlansInPath" algorithm in the following pseudocode:

Algorithm GenerateAllPlansInPath(H):

Input: A path H

Output: A set of plans P

create a cartesian product P of all lyn in all edges in H

for each plan p1 in P

 for each plan p2 in P

 if cost of p1 > cost of p2

 if all lyn in p1 are also in p2

 remove p2 from P

 end if

 else if cost of p1 = cost of p2

 if distance of mikrolet stops from passenger in p2

 is farther than in p1

 remove p2 from P

 end if

 end for

end for

When the passenger transit to exchange to another lyn, the cost of plan will be
incremented. To calculate the cost of plan, we use following algorithm named
“SetCost”:

Algorithm SetCost(p)

Input: A plan p

Output: A cost c

set c := 1

for each lyn l1 in p

 if exist next lyn l2 after l1

 if l2 <> l1 then

 increment c by 1

 end if

 end if

end for

The example results of cartesian products with their cost from all lyn on all paths based
on Figure 2 can be seen on Table 2.

Table 2. Result of all plans generated by cartesian products (based on Figure 2)

No Path Plan Cost

1 12 – 23 – 34 A, A, A 1

2 23 – 34 A, A 1

3 34 A 1

5 12 – 23 – 34 – 45 A, A, A, A, A 1

6 16 – 67 – 75 B, B, B 1

7 16 – 67 – 75 B, C, B 3

8 16 – 67 – 75 B, B, D 2

Agi & Aryo, Prototype of Rast Location-based Service:

... 259

p-ISSN: 2540-9433; e-ISSN: 2540-9824

9 16 – 67 – 75 B, C, D 3

10 16 – 67 – 75 C, B, B 2

11 16 – 67 – 75 C, B, D 3

12 16 – 67 – 75 C, C, B 2

13 16 – 67 – 75 C, C, D 2

14 23 – 34 – 45 A, A, A 1

15 34 – 45 A, A 1

The final step of "GenerateAllPlansInPath" algorithm is filtering all plans by distance
of mikrolet stops from passenger and plan cost. Some plans may be discarded in this
step. The example of final results of all generated plans based on Figure 2 can be seen
in Table 3.

Table 3. Final result of all generated plans (based on Figure 2)

No Origin

Node

Destination

Node

Plan

1 2 5 A

2 1 5 B

3 1 5 C, D

4 Development of Prototype

All trip plans generated from the computational process based on the proposed
algorithm is published in the form of a REST web service so that it can be consumed
easily by various computers, smartphones, or other devices. The general description of
the proposed Web Service system architecture can be seen in Figure 5. All data
communication between clients and web service use HTTP GET.

Fig. 5. Proposed system architecture

The prototype of REST webservice service developed in this study has only one
functionality, which is to produce all alternative trip plans with mikrolet. When
requesting services, the client must provide four input parameters as follows:

1. Coordinate of origin
2. Coordinate of destination
3. The passenger range in origin
4. The passenger range in destination

The client makes a request by sending an HTTP GET request, then the system will
return an XML document. In detail the prototype of web service specifications
developed can be seen in Table 4.

260 JITeCS Volume 4, Number 3, Desember 2019, pp 253-266

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Table 4. Specification of REST web service prototype

Service name Trip plan with mikrolet

Service URL

template

/tripplan?originlat=[originlat]

&originlng=[originlng]

&destinationlat=[destinationlat]

&destinationlng=[destinationlng]

&originrange=[originrange]

&destinationrange=[destinationrange]

Service URL

example

/travelplan?originlat=-7.93621921539307

&originlng=112.65914916992188

&destinationlat=-7.93516683578491

&destinationlng=112.65661621093750

&originrange=100

&destinationrange=100

Request method GET

Response media type application/xml

Response

representation

template

<plans>

 <plan distance="[distance]"

 cost="[cost]"

 distance-to-origin="[distance-to-origin]"

 distance-to-destination=

 "[distance-to-destination]">

 <routes>

 <route

 originlat="[originlat]"

 originlng="[originlng]"

 destinationlat="[destinationlat]"

 destinationlng="[destinationlng]"

 lyn="[lyn]"/>

 </routes>

 </plan>

</plans>

Response

representation

example

<plans>

 <plan distance="303.38717738776126"

 cost="1"

 distance-to-origin="0.0"

 distance-to-destination="0.0">

 <routes>

 <route originlat="-7.93621921539307"

 originlng="112.65914916992188"

 destinationlat="-7.93599605560303"

 destinationlng="112.658447265625"

 lyn="AG-O"/>

 <route originlat="-7.93599605560303"

 originlng="112.658447265625"

 destinationlat="-7.93576192855835"

 destinationlng="112.65779876708984"

 lyn="AG-O"/>

 <route originlat="-7.93576192855835"

 originlng="112.65779876708984"

 destinationlat="-7.93544387817383"

 destinationlng="112.65711212158203"

 lyn="AG-O"/>

 <route originlat="-7.93544387817383"

Agi & Aryo, Prototype of Rast Location-based Service:

... 261

p-ISSN: 2540-9433; e-ISSN: 2540-9824

 originlng="112.65711212158203"

 destinationlat="-7.93516683578491"

 destinationlng="112.6566162109375"

 lyn="AG-O"/>

 </routes>

 </plan>

 <plan distance="303.38717738776126"

 cost="2"

 distance-to-origin="0.0"

 distance-to-destination="0.0">

 <routes>

 <route originlat="-7.93621921539307"

 originlng="112.65914916992188"

 destinationlat="-7.93599605560303"

 destinationlng="112.658447265625"

 lyn="GA-O"/>

 <route originlat="-7.93599605560303"

 originlng="112.658447265625"

 destinationlat="-7.93576192855835"

 destinationlng="112.65779876708984"

 lyn="GA-O"/>

 <route originlat="-7.93576192855835"

 originlng="112.65779876708984"

 destinationlat="-7.93544387817383"

 destinationlng="112.65711212158203"

 lyn="AL-O"/>

 <route originlat="-7.93544387817383"

 originlng="112.65711212158203"

 destinationlat="-7.93516683578491"

 destinationlng="112.6566162109375"

 lyn="AL-O"/>

 </routes>

 </plan>

 <plan distance="303.38717738776126"

 cost="2"

 distance-to-origin="0.0"

 distance-to-destination="0.0">

 <routes>

 <route originlat="-7.93621921539307"

 originlng="112.65914916992188"

 destinationlat="-7.93599605560303"

 destinationlng="112.658447265625"

 lyn="GA-O"/>

 <route originlat="-7.93599605560303"

 originlng="112.658447265625"

 destinationlat="-7.93576192855835"

 destinationlng="112.65779876708984"

 lyn="GA-O"/>

 <route originlat="-7.93576192855835"

 originlng="112.65779876708984"

 destinationlat="-7.93544387817383"

 destinationlng="112.65711212158203"

 lyn="AT-O"/>

 <route originlat="-7.93544387817383"

262 JITeCS Volume 4, Number 3, Desember 2019, pp 253-266

p-ISSN: 2540-9433; e-ISSN: 2540-9824

 originlng="112.65711212158203"

 destinationlat="-7.93516683578491"

 destinationlng="112.6566162109375"

 lyn="AT-O"/>

 </routes>

 </plan>

</plans>

In response representation example in Table 4, there are fields with name “distance-
to-origin” and “distance-to-destination”. These two fields are the distance that the
passenger should travel in order to get on the mikrolet from passenger’s initial location
(“distance-to-origin”) or to arrive on destination from the place the passenger gets off
the mikrolet (“distance-to-destination”). From example in Figure 2, the “distance-to-
origin” is the distance between Passenger X and node 1, node 2 or node 3 and the
“distance-to-destination” is the distance between node 4 or node 5 and destination. The
generated trip plans in form of XML response from REST web service developed in

this study can be visualized on map as shown in Figure 6. Each lyn is given a different
color to illustrate the trip plan that passengers can follow.

Fig. 6. Visualization example of trip plan by lyn A, B and C

5 Testing and Evaluation

Testing and evaluation are carried out to determine the correctness of prototype
functionality and the characteristics of prototype performance. The correctness of
prototype functionality is determined by experimentation with example data as in
Figure 2. We test the system as a black-box. All test cases and results in our
functionality testing can be seen on Table 5.

Table 5. Functionality test results

No Input Expected

Result

Result Status

1 Location and range of

Passenger X

Plan 1: A

Plan 2: B

Plan 3: C,D

Plan 1: A

Plan 2: B

Plan 3: C,D

Passed

Performance testing is done with dummy data to obtain an initial description of the

Agi & Aryo, Prototype of Rast Location-based Service:

... 263

p-ISSN: 2540-9433; e-ISSN: 2540-9824

performance characteristics of the prototype developed. The test case is taken based on
the combination of the original location and destination location as follows:

1. The origin node at the end of the graph, the destination node on the other end of the

graph
2. The origin node in the middle of the graph, the destination node at the end of the

graph
3. The origin node at the end of the graph, the destination location in the middle of the

graph
4. The origin node at the end of the graph, the destination node at the same end of the

graph
Each test case will be executed 3 times and measured the estimated execution time

needed for the prototype to produce a route plan. Performance is measured from the
time needed when the REST Web Service gets a request to produce a response in
milliseconds (ms).

In order to determine the initial performance of data processing time, testing and
evaluation are done through a simulation process with dummy data. The environment
for testing is as follows:
1. Hardware specifications:

a. Processor : Intel Core i5 3320M
b. RAM : 8GB DDR3 800MHz
c. Hard Disk : 5400 rpm SATAIII

2. Software specifications:
a. Operating System : Microsoft Windows 7 64-bit
b. Java Environment : JDK 10 64-bit
c. Web Server : Apache Tomcat 9 64-bit

3. Test Data:
a. Number of graph node adjacency lists : 1096
b. Number of lyn : 4
Based on the results of performance testing which can be seen in Figure 7, it appears

that there is a degradation in performance along with the increasing number of routes
found. With more routes being found, the greater the computational process for
determining trip plans. This indicates that the proposed algorithm needs to get further
optimization in terms of efficiency.

Fig. 7. Performance testing results of proposed prototype

As a comparation, those results showed in Figure 7 resemble the performance

characteristics of the DFS algorithm as shown in Figure 8. However, overall
performance of proposed trip plans algorithm doesn’t scale as well as DFS due to
additional processes (modifications) that are not exist in the original DFS. Those
processes include recording visited node and edges, generating cross product of all lyn

264 JITeCS Volume 4, Number 3, Desember 2019, pp 253-266

p-ISSN: 2540-9433; e-ISSN: 2540-9824

and generating trip plans.

Fig. 8. Performance of DFS algorithm on various library [15]

6 Discussions

Based on the results of performance tests, it is known that performance has decreased
dramatically when the number of routes produced increases. Among the causes are the
characteristics of the DFS algorithm. Other studies on ride-sharing and fixed-route taxi
algorithms also experience performance problems and require an optimization in
algorithm performances [16] [17]. An adaptation or modification of dynamic
programming (DP) algorithm can be used to improve the performance of the trip
planning algorithm [18].

The trip planning algorithm proposed in this study only supports direct transfers
from one lyn to another lyn. In other words, transfers between lyn only occur when both

lyn meet at a same location. However, in the real world scenario, transfers may be made
indirectly. Passengers may have to walk before moving to another lyn. Illustration of
transfers between lyn indirectly can be seen in Figure 9.

Fig. 9. Trip planning with indirect transfers

In order to travel to destination, passenger X should following one of these plans:

Agi & Aryo, Prototype of Rast Location-based Service:

... 265

p-ISSN: 2540-9433; e-ISSN: 2540-9824

1. Walk to take on A on node 1, take off from A on node 5, walk to destination
2. Walk to take on B on node 1, take off from B on node 5, walk to destination
3. Walk to take on C on node 1, take off from C and transfer to D on node 7, take off

from D on node 5, walk to destination
4. Walk to take on E on node 1, take off from E on node 8, walk to take on B on node

6, take off from B on node 5, walk to destination
5. Walk to take on E on node 1, take off from E on node 8, walk to take on C on node

6, take off from C on node 7 and transfer to D, take off from D on node 5, walk to
destination

6. Walk to take on E on node 1, take off from E on node 8, walk to take on F on node
9, take off from F on node 5, walk to destination

The process of transfers from E to B, E to C and E to F is indirect transfer.
Yet another issue is in the process of determining trip plans. The parameters used

in trip planning algorithm includes the cost and distance, but do not include the total
travel time. From the results of observations in the field it is known that there is no
definite relationship between time and distance. Long distances do not necessarily
result in long travel times and short distances do not necessarily result in short travel
times. Thus, in the future it is necessary to develop a method to estimate the total travel
time to make a better trip planning system.

7 Conclusion and Future Work

Based on this study, it can be concluded that the prototype of trip planning services

can be realized in the form of REST web services and location-based services. Based

on experiment on functionality testing, the proposed algorithm has succeeded in

producing all possible routes and plans that connect origin locations to destination

locations. The XML output of REST web service can be visualized on map. However,

from the results of performance testing it can be concluded that there is significant

performance degradation with the increasing number of generated routes. Future works

need to deal with open issues described in discussion section. The open issues include

development of optimized algorithm to produce higher performance, development of

plans with indirect transfer and development of method to estimate travel time by

paratransit.

References

1. Joewono TB, Kubota H.: User satisfaction with paratransit in competition with motorization

in indonesia: anticipation of future implications. In: Transportation (2007) 34(3) pp. 337–
354.

2. Siuhi, Saidi and Mwakalonge, Judith.: Opportunities and challenges of smart mobile
applications in transportation. In: Journal of Traffic and Transportation Engineering (English
Edition) (2016) Vol. 3, Issue 6, pp. 582-592

3. Priscilia, Prisca. and Octavia, Johanna Renny.: Pengembangan Aplikasi Mobile untuk
Mempermudah Pencarian Informasi Rute Angkutan Kota Di Bandung. In: PERFORMA Vol.
16, No 1 Maret (2017) pp. 62-71

4. Kharisma, Agi Putra and Pinandito, Aryo.: Design of REST API for Local Public
Transportation Information Services in Malang City. In: Journal of Information Technology
and Computer Science, Vol. 2, No. 2, pp 92-102. Universitas Brawijaya (2017)

5. Fielding, Roy Thomas.: Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. dissertation, University of California, Irvine. Available:
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

6. Kupper, Axel.: Location-Based Services: Fundamentals and Operation. John Wiley & Sons,
Inc., , USA (2005)

266 JITeCS Volume 4, Number 3, Desember 2019, pp 253-266

p-ISSN: 2540-9433; e-ISSN: 2540-9824

7. Chang, Shwu-Jing., Hsu, Gong-Ying., Huang, Shian-Jia.: Location-aware mobile
transportation information service. In: Mobile Technology, Applications and Systems (2005)
2nd International Conference (2005), S. 5 pp. -5

8. Huang, C. Derrick., Goo, Jahyun., Nam, Kichan., Yoo, Chul Woo.: Smart tourism
technologies in trip planning: The role of exploration and exploitation.. In: Information &
Management, 54 (2017), Nr. 6, S. pp. 757-770

9. Chowdhuri, Subeh. and Giacaman, Nasser.: En-Route Planning of Multi-Destination Public-
Transport Trips Using Smartphones. In: Journal of Public Transportation, Vol. 18, No. 4
(2015) pp. 31-45

10. Goodrich, Michael T. and Tamassia, Roberto.: Algorithm Design and Applications (1st ed.).
Wiley Publishing (2014).

11. Song, Cuiying., Guan, Wei., Ma, Jihui.: Potential travel cost saving in urban public transport
networks using smartphone guidance. In: PLoS One. (2018);13(5):e0197181.
doi:10.1371/journal.pone.0197181

12. Lee, Lie-Quan, Jeremy G. Siek, and Andrew Lumsdaine.: The generic graph component
library. In: ACM SIGPLAN Notices (1999), vol. 34, no. 10, pp. 399-414.

13. Smart, William Marshall.: Textbook on Spherical Astronomy, 6th ed. Cambridge University
Press (1977).

14. Rosen, Kenneth H.: Discrete Mathematics and Its Applications, 7th ed. McGraw-Hill (2012).
15. Lee, Lie-Quan., Siek, Jeremy G., Lumsdaine, Andrew.: The generic graph component library.

In: ACM SIGPLAN Notices, vol. 34, no. 10, pp. 399-414. (1999)
16. Babaei, Mohsen., Schmöcker, Jan‐Dirk., Khademi, Navid., Reza Ghaffari, Ahmad., Naderan,

Ali.: Fixed‐route taxi system: route network design and fleet size minimization problems. In:
Journal of Advanced Transportation 50, no. 6 (2016) pp. 1252-1271

17. Bei, Xiaohui, and Zhang, Shengyu.: Algorithms for trip-vehicle assignment in ride-sharing.
In: Thirty-Second AAAI Conference on Artificial Intelligence (2018).

18. Tong, Yongxin., Zeng, Yuxiang., Zhou, Zimu., Chen, Lei, Ye, Jieping., Xu, Ke.: A unified
approach to route planning for shared mobility. In: Proceedings of the VLDB Endowment
11, no. 11 (2018) pp. 1633-1646

